Главная страница «Первого сентября»Главная страница журнала «Химия»Содержание №8/2008

ЛЕТОПИСЬ ВАЖНЕЙШИХ ОТКРЫТИЙ

 

Инсулин – популярнейшая
молекула XX столетия

В истории химии случались события, по своему драматизму напоминавшие штурм неприступной вершины, на которую пытаются взойти одновременно независимые группы альпинистов по различным маршрутам. Все это сопровождается обстановкой состязания – кто взойдет на вершину первым?

Далее речь пойдет о синтезе инсулина – событии, ставшем заметным достижением в химической науке. Точно так же, как перед штурмом вершины альпинисты создают базовые, промежуточные и штурмовые лагеря, синтез инсулина был хорошо подготовлен, но не теми, кто вышел на покорение вершины, а основательными работами исследователей-предшественников. Можно уверенно сказать, что создание исходного плацдарма впечатляет не меньше, чем последующий штурм. Инсулин по праву можно назвать популярнейшей молекулой ХХ столетия; с исследованиями этого соединения связаны имена семи (!) нобелевских лауреатов.

Белок, спасающий жизнь

В середине XX в. инсулин был одним из наиболее интенсивно изучаемых веществ. Причина в том, что удалось объяснить происхождение одного из тяжелейших заболеваний – сахарного диабета. Болезнь возникает, когда в организме недостаточно гормона* инсулина. Инсулин запускает процессы, обеспечивающие поступление глюкозы (сахара) в клетки, а также стимулирует внутриклеточные механизмы, позволяющие усваивать глюкозу.

При недостатке инсулина глюкоза не расходуется клетками, она накапливается в крови и начинает через почки поступать в мочу. Повышенный уровень глюкозы в крови и ее выведение с мочой приводят к похуданию, чрезмерному мочеотделению, постоянному ощущению сильной жажды и голода. Организм старается компенсировать дефицит калорий, которые он теряет с мочой в виде глюкозы, и начинает использовать жировые запасы и тканевые белки (главным образом мышечные). Возникают утомление, сонливость, тошнота, нарушаются обменные процессы, что может привести к диабетической коме, а при отсутствии лечения к смерти.

Сахарный диабет встречается среди населения всех стран и у представителей всех рас. Самое раннее описание этого заболевания было сделано примерно 3000 лет назад в Древней Индии. Подробные симптомы болезни (обильное мочеотделение, чрезмерная жажда и потеря веса) были описаны в I в. н.э. Болезнь получила свое название от греческого diabetes, что означает «протекаю, прохожу сквозь» (имеется в виду чрезмерное мочеотделение).

Планомерное изучение этого заболевания длилось не одно столетие. В XVII в. английский врач Т.Уиллис обратил внимание на то, что моча у пациентов с такими симптомами имеет сладковатый вкус (провести подобный анализ мог только истинный ученый). Картина начала проясняться после опытов французского физиолога Клода Бернара (1813–1878), в которых он наблюдал собак с удаленной поджелудочной железой. Его опыты продолжили в 1889 г. немецкие физиологи Йозеф фон Меринг и Оскар Минковский. Они удаляли хирургическим путем поджелудочную железу у собак и затем наблюдали у них резкий подъем концентрации глюкозы в крови, ее появление в моче и другие признаки сахарного диабета. Таким образом они экспериментально доказали связь между поджелудочной железой и сахарным диабетом.

.Маклеод (1876–1935)
Д.Маклеод
(1876–1935)

Некоторые физиологи высказывали предположение, что поджелудочная железа вырабатывает вещество, которое способствует усваиванию в организме глюкозы. В 1916 г. немецкий физиолог Шарпи-Шафер назвал это гипотетическое вещество инсулин (от латинского insula – островок, поскольку отчетливо наблюдаемые группы клеток поджелудочной железы к этому моменту именовали островками Лангерганса). Тогда это было только предположение, которое впоследствии полностью подтвердилось.

Ф.Бантинг (1891–1941)
Ф.Бантинг
(1891–1941)

В 1921 г. трое канадских исследователей – профессор физиологии университета в г. Торонто (Канада) Джон Маклеод, врач-хирург Фредерик Бантинг и врач-физиолог Чарлз Бест сумели выделить инсулин из поджелудочной железы подопытных животных. Первые же опыты по введению полученного препарата собакам с удаленной поджелудочной железой продемонстрировали значительное снижение уровня сахара в крови животных и улучшение клинической картины.

Ч.Бест (1899–1978)
Ч.Бест
(1899–1978)

11 января 1922 г. (знаменательный факт в истории мировой медицины) более чистый и активный препарат инсулина был введен первому пациенту – подростку, страдавшему тяжелой формой диабета. После полученного положительного эффекта были проведены аналогичные испытания еще на нескольких пациентах. Возникло новое направление в медицинской науке – гормонотерапия.

В 1923 г. Маклеод и Бантинг были удостоены Нобелевской премии по физиологии и медицине «за открытие инсулина». Бест не был включен в список лауреатов, и Бантинг отдал ему половину полученных денег (жест, достойный истинного ученого).

В 1926 г. было налажено серийное производство инсулина. Многие тысячи больных сахарным диабетом, ранее обреченных на смерть, были спасены и могли вести сравнительно нормальную жизнь, регулярно принимая лекарство.

От медицины к химии

Физиологи Маклеод и Бантинг использовали для лечения больных экстракт поджелудочной железы животных. Однако химиков всегда интересовало, как именно устроено то или иное соединение. Инсулин в кристаллическом виде впервые сумел получить в 1926 г. Дж.Абель. Именно благодаря его работам удалось наладить промышленное производство препарата. Абель также определил состав инсулина, стало понятно, что вещество представляет собой белковую молекулу. C этого момента исследования инсулина из медицины переходят в область химии, точнее, в руки биохимиков.

Ф.Сенгер (р. 1918)
Ф.Сенгер
(р. 1918)

Все упомянутые выше работы подготовили решающий этап, позволивший выяснить, как устроена молекула, привлекавшая внимание столь большого числа исследователей. Решить эту задачу удалось американскому биохимику Фредерику Сенгеру. Вначале он разработал способ идентификации концевых аминогрупп в белковой молекуле путем обработки в щелочной среде динитрофторбензолом (впоследствии этот метод стал классическим). Далее он буквально разобрал на части всю молекулу инсулина и определил состав полученных аминокислот с помощью самых современных методов – электрофореза, разработанного А.Тизелиусом (Нобелевская премия, 1948 г.) и хроматографии, усовершенствованной А.Мартином и Р.Сингом (нобелевские лауреаты, 1952 г.). Однако установить, из каких аминокислот собрана белковая молекула, лишь половина дела, притом менее сложная. Главное – выяснить их последовательность в цепи.

Сенгер разработал план, по которому с помощью специально подобранных ферментов (биологических катализаторов) проводил расщепление белковой цепи на небольшие отрезки в заранее намеченных участках, а потом сопоставлял их состав. Работа представляла собой безупречное сочетание логики и экспериментального мастерства, и в 1958 г. ученому была присуждена Нобелевская премия «за работы по структуре протеинов, особенно инсулина». Свой метод Сенгер довел буквально до совершенства, со временем его методика стала общим принципом исследования структуры белков.

Винсент Дю Виньо (1901–1978)
Винсент
Дю Виньо
(1901–1978)

Попутно отметим, что Сенгер, применив похожие логические построения, но несколько изменив методику и используемые реагенты, сумел установить последовательность фрагментов в структуре знаменитой двойной спирали ДНК. За эти исследования в 1980 г. Сенгеру (совместно с У.Гилбертом и П.Бергом) была присуждена еще одна Нобелевская премия «за вклад в определение последовательности оснований в нуклеиновых кислотах». Таким образом, Сенгер – единственный дважды нобелевский лауреат по химии. Никто не мог предположить, что эти исследования ДНК со временем откроют новую страницу в химии инсулина, но об этом речь пойдет несколько позже.

Дороти Кроуфут-Ходжкин (1910–1994)
Дороти
Кроуфут-Ходжкин
(1910–1994)

Американский биохимик Винсент Дю Виньо, в течение нескольких лет изучавший инсулин, узнав о работах Сенгера, решил воспользоваться его методикой для расшифровки структуры двух других гормонов (вазопрессина и окситоцина). Однако он не только установил строение, но и синтезировал молекулы этих гормонов. Фактически он был первым, кто сумел синтезировать природные полипептиды. Эта работа ученого была отмечена Нобелевской премией в 1955 г., т.е. он получил премию на три года раньше Сенгера, чьи идеи помогли ему добиться столь великолепного результата. Работы Дю Виньо фактически открыли дорогу к синтезу инсулина.

Тем временем изучение инсулина продолжалось. Исследование лечебных свойств инсулина позволило установить, что его цинковый комплекс из нескольких молекул, так называемый Zn-инсулин, обладает более длительным лечебным действием. Строение этого комплекса оказалось весьма сложным (он содержит почти 800 атомов), поэтому были привлечены физико-химические методы анализа. В 1972 г. английский биофизик Дороти Кроуфут-Ходжкин (лауреат Нобелевской премии 1964 г. за определение с помощью рентгеновских лучей структур биологически активных веществ) установила трехмерную структуру этого необычайно сложного комплекса.

Упрощенный язык биохимиков

Прежде чем рассмотреть строение молекулы инсулина, познакомимся с тем, как биохимики изображают молекулы белков.

Все белки представляют собой полимеры, цепи которых собраны из фрагментов аминокислот. Аминокислоты – это органические соединения, содержащие в своем составе аминогруппу NH2 и карбоксильную группу СООН. В образовании белков участвуют только такие аминокислоты, у которых между аминогруппой и карбоксильной группой всего один углеродный атом. В общем виде они могут быть представлены формулой H2N–CH(R)–COOH. Группа R, присоединенная к атому углерода (тому, который находится между амино- и карбоксильной группой), определяет различие между аминокислотами, образующими белки. Эта группа может состоять только из атомов углерода и водорода, но чаще содержит помимо С и Н различные функциональные группы. Из всего многообразия существующих аминокислот (теоретически количество возможных аминокислот неограниченно) в образовании белков участвуют только двадцать, так называемые «фундаментальные» аминокислоты. Для «строительства» инсулина природа использовала 16 аминокислот (из допустимых двадцати) (табл.1).

Таблица 1

Аминокислоты, участвующие в создании инсулина

Название Структура Обозначение*
Глицин     Гли
Аланин     Ала
Валин     Вал
Лейцин     Лей
Изолейцин     Иле
Серин     Сер
Цистеин     Цис
Лизин     Лиз
Аргинин     Арг
Аспарагин     Асн
Глутаминовая кислота     Глу
Глутамин     Глн
Фениаланин     Фен
Тирозин     Тир
Гистидин     Гис
Пролин     Про

* В международной практике принято сокращенное обозначение перечисленных аминокислот с помощью латинских трехбуквенных сокращений, например глицин – Gly, аланин – Ala и т.п.

Белковая молекула образуется в результате последовательного соединения аминокислот, при этом карбоксильная группа одной кислоты взаимодействует с аминогруппой соседней молекулы, в результате образуется пептидная связь –CO–NH– и выделяется молекула воды. На схеме 1
(см. с. 6) показано последовательное соединение аланина, валина и глицина.

Схема 1

Из превращений, показанных на схеме 1, следует, что при любом количестве соединяемых аминокислот на одном конце возникшей цепочки обязательно будет находиться аминогруппа, а на другом – карбоксильная. Фрагменты соединенных аминокислот обозначены (под фигурными скобками) теми сокращенными буквосочетаниями, которые указаны в табл. 1. Таким образом, вместо структурной формулы мы можем использовать сокращенное обозначение получившегося трипептида: ала-вал-гли. Поскольку количество аминокислот, используемых природой, всего двадцать, то подобные сокращения позволяют компактно записать формулу любого белка, и никакой неясности при этом не возникнет.

Молекула инсулина, как установил Сенгер, состоит из 51 аминокислотного остатка (это один из самых короткоцепочечных белков) и представляет собой две соединенные между собой параллельные цепи неодинаковой длины. На схеме 2 показана последовательность аминокислот в молекуле инсулина: А-цепь содержит 21 аминокислотный остаток, Б-цепь – 30.

Схема 2

Содержащиеся в молекуле остатки аминокислоты цистеина (сокращенное обозначение Цис) образуют дисульфидные мостики S-S-, которые связывают две полимерные цепи молекулы и, кроме того, образуют перемычку внутри А-цепи. При таком компактном изображении белковой молекулы символы химических элементов используют только для обозначения дисульфидных мостиков и концевых групп (NH2 и COOH).

Для сравнения далее показана структурная формула инсулина в виде объемной шаростержневой модели (схема 3).

Схема 3

Согласитесь с тем, что биохимики выбрали компактный и необычайно удобный для написания способ изображения белковых молекул.

От демонтажа к сборке

Казалось бы, после того как установлена структура молекулы, синтезировать ее заново не составит большого труда.

Основная трудность при сборке белковой молекулы – добиться, чтобы необходимые аминокислоты соединялись в строго определенном порядке. При этом нужно учитывать, что аминокислота способна реагировать не только с другой аминокислотой, но и сама с собой, и в итоге может получиться молекула, не имеющая ничего общего с тем, что синтезирует живой организм.

К моменту, когда решался вопрос о синтезе инсулина, было разработано несколько соответствующих методик. Для того чтобы аминокислота, которую намечено было присоединить к растущей цепи, не реагировала сама с собой, ее реакционноспособные концы (аминогруппу NH2 и карбоксильную группу СООН) блокировали специальным образом: карбоксильную группу переводили в п-нитрофениловый эфир, а со стороны аминогруппы присоединяли карбоксибензильную группу. Такая блокированная молекула реагировала с аминогруппой, находящейся на конце растущей цепи, по схеме 4 (cм. c. 8).

Схема 4

В результате растущая цепь удлинялась на одно пептидное звено. Однако теперь на конце цепи разместилась блокирующая карбоксибензильная группа. Чтобы сделать «аминный хвост» реакционноспособным, т. е. перевести его в активную форму, осуществляли обработку бромоводородом с уксусной кислотой по схеме 5 (cм. c. 8).

Схема 5

В результате аминогруппа на конце цепи (она показана в виде аммониевой соли с HBr) вновь была готова реагировать с очередной аминокислотой (естественно, тоже содержащей блокирующие группы). Параллельно были разработаны и другие методы сборки полипептидных цепей.

Штурм вершины

К полному синтезу инсулина в 1962 г. приступили практически одновременно три группы исследователей: группа П.Катсоянниса в г. Питсбурге (США), группа Г.Цана в г. Аахене (Германия), а также группа китайских химиков (Шанхай и Пекин). Все три группы действовали по весьма похожим стратегиям: собрали отдельно короткую и длинную цепи из заготовленных фрагментов, а затем соединяли обе цепи дисульфидными мостиками.

Аахенская группа Г.Цана (он в центре)
Аахенская группа Г.Цана (он в центре)

Короткую А-цепь все три группы исследователей собирали из двух одинаковых блоков.

1-й блок: гли-иле-вал-глу-глн-цис-цис-тир-сер;

2-й блок: иле-цис-сер-лей-тир-глн-лей-глу-асн-тир-цис-асн.

Длинную Б-цепь собирали из четырех полипептидных блоков, однако длина этих блоков у разных групп ученых несколько различалась (табл. 2).

Таблица 2

Полипептидные блоки для сборки Б-цепи инсулина

Исследова-
тельская группа
1-й блок 2-й блок 3-й блок 4-й блок
Аахенская Фен-вал-асн-глн-
гис-лей-цис-гли
Сер-гис-лей-
вал-глу-ала
Лей-тир-лей-
вал-цис-глу
Глу-арг-глу-фен-фен-
тир-тир-про-лиз-тир
Питсбургска Фен-вал-асн-глн-
гис-лей-цис-гли-сер
Гис-лей-вал-глу Ала-лей-тир-лей-
вал-цис-глу
Глу-арг-глу-фен-фен-
тир-тир-про-лиз-тир
Пекинско-
шанхайская
Фен-вал-асн-глн-
гис-лей-цис-гли
Сер-гис-лей-вал-
глу-ала-лей-тир
Лей-вал-цис-глу Глу-арг-глу-фен-фен-
тир-тир-про-лиз-тир

Различия возникли из-за того, что методы соединения блоков и способы промежуточной защиты, используемые каждой из исследовательских групп, были неодинаковы. Естественно, на последнем этапе у всех групп получились одинаковые цепи. Приблизительно год ушел на создание исходных блоков. Подстегиваемая обстановкой соревнования аахенская группа интенсифицировала работу и в декабре 1963 г. сообщила об успешном синтезе инсулина. Эта группа буквально вырвала первенство у питсбургских химиков, которые сообщили об успешном результате в марте 1964 г. Окончательный выход чистого продукта колебался в пределах 0,02–0,07%. У китайских химиков выход был несколько выше (1,2–2,5%); разумеется, о производстве инсулина по таким методикам не могло быть и речи.

Питсбургская группа П.Катсоянниса (он второй справа)
Питсбургская группа П.Катсоянниса
(он второй справа)

Синтез инсулина стал убедительной победой классической синтетической химии пептидов. Несмотря на низкий выход продукта, все признавали, что была проделана выдающаяся работа, которая позволила изменить образ мышления химиков, сформулировать новые принципы сборки больших молекул, отработать стратегию синтеза и подобрать оптимальные методики. Все это заметно повысило общий уровень органической химии. Тем не менее истинного триумфа не получилось, потому что почти одновременно с успешным завершением этих работ появилась принципиально иная, более совершенная методика сборки белковых молекул.

Главное – закрепить хвост

Профессор Рокфеллеровского университета (Нью-Йорк) Роберт Меррифилд, занимаясь химией белков, высказал оригинальную идею: первую аминокислоту можно закрепить одним концом на некой нерастворимой поверхности (носителе). Затем следует присоединить к другому ее концу следующую аминокислоту, при этом нежелательные побочные продукты и промежуточные реагенты, не вступившие в реакцию, можно будет вымывать из реакционного сосуда после каждой стадии, а растущий полипептид, прикрепленный к носителю, останется при этом незатронутым. Молекулы растущих полипептидов будут подвешены «за хвост» к твердой поверхности носителя, а когда процесс синтеза завершится, конечный полипептид можно отделить от носителя.

Меррифилду удалось реализовать эту идею. Первую аминокислоту присоединяют к нерастворимому полимерному гелю (сшитый полистирол) с введенными в него хлорметильными группами CH2Cl, которые способны реагировать с СООН-группами аминокислоты. Чтобы взятая для реакции аминокислота не прореагировала сама с собой и не присоединилась аминогруппой к подложке, NH2-группу этой кислоты предварительно блокируют объемистым заместителем – [(С4Н9)3]3ОС(О)-группой. После того как аминокислота присоединилась к полимерной подложке, блокирующую группу удаляют и в реакционную смесь вводят другую аминокислоту, у которой также предварительно заблокирована NH2-группа. В такой системе возможно только взаимодействие NH2-группы первой аминокислоты и COOH-группы второй аминокислоты, которое проводят в присутствии катализаторов (солей фосфония). Далее схему присоединения повторяют, вводя третью аминокислоту. Вся схема синтеза полипептидных цепей, позволяющая чередовать аминокислотные остатки в заданном порядке, выглядит следующим образом (схема 6).

Схема 6

На последней стадии полученные полипептидные цепи отделяют от полистирольной подложки действием HBr в присутствии трифторуксусной кислоты F3CCOOH.

Р.Меррифилд
Р.Меррифилд
(р. 1921 г.)

Меррифилд не только экспериментально проверил эффективность предложенного метода, но и сконструировал аппарат, который практически автоматизировал пептидный синтез. Это устройство представляло собой контейнер для аминокислот и реагентов – реакционный сосуд с автоматическими впускным и выпускным клапанами и программным механизмом, который регулировал последовательность процессов и длительность каждой стадии.

С помощью сконструированного аппарата Меррифилд и его коллеги синтезировали инсулин всего за 20 дней (притом с выходом в десятки процентов), в то время как «первопроходцы» – аахенская, питсбургская и шанхайская группы – затратили на это больше года.

В 1985 г. Меррифилд был удостоен Нобелевской премии «за развитие методологии твердофазного химического синтеза».

Копируем Природу

Во время проведения описанных выше работ химиков не оставляла мысль, что те задачи, которые ученые решают с таким трудом, Природа решает легко и исключительно аккуратно. Синтез белков в живых организмах проходит в мягких условиях, быстро и без образования побочных продуктов. До определенного момента химики могли лишь с удивлением и интересом наблюдать подобные «синтезы», однако стремительное развитие биохимии позволило активно вмешаться в эти процессы, в том числе открыть принципиально новый способ синтеза инсулина.

Ранее было сказано, что Ф.Сенгер (установивший структуру инсулина) сумел определить последовательность фрагментов в структуре ДНК, за что был удостоен второй Нобелевской премии. Эта работа позволила биохимикам перейти к следующему этапу – встраивать в генетический код ДНК заранее намеченные фрагменты. Основная идея состояла в том, чтобы в ДНК некоторых бактерий включать гены высших организмов. В результате бактерии приобретают способность синтезировать соединения, которые прежде могли синтезировать только высшие организмы. Такая технология получила название «генная инженерия».

В 1981 г. канадский биохимик Майкл Смит был приглашен в научные соучредители новой биотехнологической компании «Зимос». Один из первых контрактов фирмы был заключен с датской фармацевтической компанией «Ново» по разработке технологии производства человеческого инсулина в дрожжевой культуре. В результате совместных усилий инсулин, полученный по новой технологии, в 1982 г. поступил в продажу. В 1993 г. за цикл работ в этой области М.Смит (совместно с К.Муллисом) получил Нобелевскую премию. В настоящее время инсулин, получаемый методом генной инженерии, практически вытеснил инсулин животных.

Чьи работы важнее

М.Смит (1932–2000)
М.Смит (1932–2000)

Итак, мы познакомились с четырьмя способами получения инсулина: экстракцией из поджелудочной железы животных (группа Д.Маклеода), многоступенчатым синтезом (группа Г.Цана), автоматизированной сборкой (Р.Меррифилд), методом генной инженерии (М.Смит). Оставим в стороне медицинский аспект проблемы, сосредоточим внимание на химии. Могло сложиться впечатление, что работы Смита сделали ненужными все предшествующие исследования. На самом деле это не так, все методы неразрывно связаны, ни один из этапов упомянутых исследований нельзя «выбросить». Инсулин, выделенный из поджелудочной железы животных, позволил Сенгеру определить его структуру, а без этого последующий синтез был невозможен. Группа Цана разработала химические приемы сборки цепей и способы промежуточной блокировки функциональных групп, которыми воспользовался Меррифилд при создании автоматической установки синтеза. Работы Смита, по существу, опирались на весь предшествующий опыт, накопленный при изучении инсулина. При синтезе некоторых короткоцепочечных гормонов автоматическая установка Меррифилда технически оказалась предпочтительнее «генной инженерии».

Обобщая, можно сказать, что все этапы, которые мы рассмотрели, – это естественный, традиционный и, если не бояться торжественных слов, величественный путь науки.


* Гормоны (от греческого – привожу в действие, побуждаю) – специфические физиологически активные вещества, вырабатываемые специальными эндокринными органами или тканями, секретируемые в кровь или лимфу и действующие на строение и функции организма.

Статья подготовлена при поддержке сайта "www.limanskaya.cn". Китайский язык сложен и специфичен, поэтому перевод должен осуществляться только специалистом. Если вам срочно потребовался переводчик с китайского на русский, то не стоит паниковать. На сайте, расположенном по адресу "www.Limanskaya.Сn", вы сможете, не отходя от экрана монитора, узнать адрес и телефон переводчика, а также посмотреть прайс-лист предоставляемых услуг.

Материал подготовил М.М.ЛЕВИЦКИЙ

Рейтинг@Mail.ru