Главная страница «Первого сентября»Главная страница журнала «Химия»Содержание №6/2005

Я ИДУ НА УРОК

Комплексные соединения

Конспект урока-лекции

Цели. Сформировать представления о составе, строении, свойствах и номенклатуре комплексных соединений; развить навыки определения степени окисления у комплексообразователя, составления уравнений диссоциации комплексных соединений.
Новые понятия: комплексное соединение, комплексообразователь, лиганд, координационное число, внешняя и внутренняя сферы комплекса.
Оборудование и реактивы. Штатив с пробирками, концентрированный раствор аммиака, растворы сульфата меди(II), нитрата серебра, гидроксида натрия.

ХОД УРОКА

Лабораторный опыт. К раствору сульфата меди(II) прилить раствор аммиака. Жидкость окрасится в интенсивный синий цвет.

Что произошло? Химическая реакция? До сих пор мы не знали, что аммиак может реагировать с солью. Какое вещество образовалось? Каковы его формула, строение, название? К какому классу соединений его можно отнести? Может ли аммиак реагировать с другими солями? Есть ли соединения, аналогичные этому? Ответить на эти вопросы нам и предстоит сегодня.

Растворы CuSO4 (а) и комплексного соединения [Cu(NH3)4(H2O)2]SO4 (б)

Растворы CuSO4 (а)
и комплексного соединения
[Cu(NH3)4(H2O)2]SO4 (б)

Чтобы лучше изучить свойства некоторых соединений железа, меди, серебра, алюминия, нам потребуются знания о комплексных соединениях.

Продолжим наш опыт. Полученный раствор разделим на две части. К одной части прильем щелочь. Осадка гидроксида меди(II) Cu(OH)2 не наблюдается, следовательно, в растворе нет двухзарядных ионов меди или их слишком мало. Отсюда можно заключить, что ионы меди вступают во взаимодействие с прибавленным аммиаком и образуют какие-то новые ионы, которые не дают нерастворимого соединения с ионами OH.

В то же время ионы остаются неизменными. В этом можно убедиться, прибавив к аммиачному раствору раствор хлорида бария. Тотчас же выпадет белый осадок BaSO4.

Исследованиями установлено, что темно-синяя окраска аммиачного раствора обусловлена присутствием в нем сложных ионов [Cu(NH3)4]2+, образовавшихся путем присоединения к иону меди четырех молекул аммиака. При испарении воды ионы [Cu(NH3)4]2+ связываются с ионами , и из раствора выделяются темно-синие кристаллы, состав которых выражается формулой [Cu(NH3)4]SO4•H2O.

Комплексными называют соединения, содержащие сложные ионы и молекулы, способные к существованию как в кристаллическом виде, так и в растворах.

Формулы молекул или ионов комплексных соединений обычно заключают в квадратные скобки. Комплексные соединения получают из обычных (некомплексных) соединений.

Примеры получения комплексных соединений

Реагирующие вещества Kомплексные соединения Kомплексные ионы
CuSO4 + 4NH3 [Cu(NH3)4] SO4 [Cu(NH3)4]2+
Fe(CN)2 + 4KCN K4[Fe(CN)6] [Fe(CN)6]4–
PtCl2 + 2NH3 [Pt(NH3)2Cl2]

Строение комплексных соединений рассматривают на основе координационной теории, предложенной в 1893 г. швейцарским химиком Альфредом Вернером, лауреатом Нобелевской премии. Его научная деятельность проходила в Цюрихском университете. Ученый синтезировал много новых комплексных соединений, систематизировал ранее известные и вновь полученные комплексные соединения и разработал экспериментальные методы доказательства их строения.

А.Вернер (1866–1919)
А.Вернер
(1866–1919)

В соответствии с этой теорией в комплексных соединениях различают комплексообразователь, внешнюю и внутреннюю сферы. Комплексообразователем обычно является катион или нейтральный атом. Внутреннюю сферу составляет определенное число ионов или нейтральных молекул, которые прочно связаны с комплексообразователем. Их называют лигандами. Число лигандов определяет координационное число (КЧ) комплексообразователя.

Пример комплексного соединения

Рассмотренное в примере соединение [Cu(H2O)4)]SO4•H2O или CuSO4•5Н2О – это кристаллогидрат сульфата меди(II).

Определим составные части других комплексных соединений, например K4[Fe(CN)6].
(Справка. Вещество с формулой HCN – это синильная кислота. Соли синильной кислоты называют цианидами.)

Комплексообразователь – ион железа Fe2+, лиганды – цианид-ионы СN, координационное число равно шести. Все, что записано в квадратных скобках, – внутренняя сфера. Ионы калия образуют внешнюю сферу комплексного соединения.

Природа связи между центральным ионом (атомом) и лигандами может быть двоякой. С одной стороны, связь обусловлена силами электростатического притяжения. С другой – между центральным атомом и лигандами может образоваться связь по донорно-акцепторному механизму по аналогии с ионом аммония. Во многих комплексных соединениях связь между центральным ионом (атомом) и лигандами обусловлена как силами электростатического притяжения, так и связью, образующейся за счет неподеленных электронных пар комплексообразователя и свободных орбиталей лигандов.

Комплексные соединения, имеющие внешнюю сферу, являются сильными электролитами и в водных растворах диссоциируют практически нацело на комплексный ион и ионы внешней сферы. Например:

[Cu(NH3)4]SO4 [Cu(NH3)4]2+ + .

При обменных реакциях комплексные ионы переходят из одних соединений в другие, не изменяя своего состава:

[Cu(NH3)4]SO4 + BaCl2 = [Cu(NH3)4]Cl2 + BaSO4.

Внутренняя сфера может иметь положительный, отрицательный или нулевой заряд.

Если заряд лигандов компенсирует заряд комплексообразователя, то такие комплексные соединения называют нейтральными или комплексами-неэлектролитами: они состоят только из комплексообразователя и лигандов внутренней сферы.

Таким нейтральным комплексом является, например, [Pt(NH3)2Cl2].

Наиболее типичными комплексообразователями являются катионы d-элементов.

Лигандами могут быть:

а) полярные молекулы – NH3, Н2О, CO, NO;
б) простые ионы – F, Cl, Br, I, H, H+;
в) сложные ионы – CN, SCN, NO2, OH.

Pассмотрим таблицу, в которой приведены координационные числа некоторых комплексообразователей.

Таблица

Kоординационное
число
Ионы
2 Cu+, Ag+, Au+
4 Cu2+, Hg2+, Sn2+, Pt2+, Pb2+, Ni2+, Co2+, Zn2+, Au3+, Al3+
6 Fe2+, Fe3+, Co2+, Co3+, Ni2+, Cr3+, Sn4+, Pt4+

Номенклатура комплексных соединений. В соединении сначала называют анион, а затем катион. При указании состава внутренней сферы прежде всего называют анионы, прибавляя к латинскому названию суффикс -о-, например: Cl – хлоро, CN – циано, OH – гидроксо и т.д. Далее называют нейтральные лиганды и в первую очередь аммиак и его производные. При этом пользуются терминами: для координированного аммиака – аммин, для воды – аква. Число лигандов указывают греческими словами: 1 – моно, 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса. Затем переходят к названию центрального атома. Если центральный атом входит в состав катионов, то используют русское название соответствующего элемента и в скобках указывают его степень окисления (римскими цифрами). Если центральный атом содержится в анионе, то употребляют латинское название элемента, а в конце прибавляют окончание -ат. В случае неэлектролитов степень окисления центрального атома не приводят, т.к. она однозначно определяется из условия электронейтральности комплекса.

Примеры. Чтобы назвать комплекс [Cu(NH3)4]Сl2, определяют степень окисления (С.О.)
х комплексообразователя – иона Cuх+:

1•x + 2•(–1) = 0, x = +2, C.O.(Cu) = +2.

Аналогично находят степень окисления иона кобальта:

y + 2•(–1) + (–1) = 0, y = +3, С.О.(Со) = +3.

Чему равно координационное число кобальта в этом соединении? Сколько молекул и ионов окружает центральный ион? Координационное число кобальта равно шести.

Название комплексного иона пишут в одно слово. Степень окисления центрального атома обозначают римской цифрой, помещенной в круглые скобки. Например:

[Cu(NH3)4]Cl2 – хлорид тетраамминмеди(II),
[Co(NH3)3H2OCl2]NO3нитрат дихлороакватриамминкобальта(III),
K3[Fe(CN)6] – гексацианоферрат(III) калия,
K2[PtCl4] – тетрахлороплатинат(II) калия,
[Zn(NH3)4Cl2] – дихлоротетраамминцинк,
H2[SnCl6] – гексахлорооловянная кислота.

На примере нескольких комплексных соединений определим структуру молекул (ион-комплексообразователь, его С.О., координационное число, лиганды, внутреннюю и внешнюю сферы), дадим название комплексу, запишем уравнения электролитической диссоциации.

K4[Fe(CN)6] – гексацианоферрат(II) калия,

K4[Fe(CN)6] 4K+ + [Fe(CN)6]4–.

H[AuCl4] – тетрахлорозолотая кислота (образуется при растворении золота в «царской водке»),

H[AuCl4] H+ + [AuCl4]–.

[Ag(NH3)2]OH – гидроксид диамминсеребра(I) (это вещество участвует в реакции «серебряного зеркала»),

[Ag(NH3)2]OH [Ag(NH3)2]+ + OH.

Na[Al(OH)4] – тетрагидроксоалюминат натрия,

Na[Al(OH)4] Na+ + [Al(OH)4].

К комплексным соединениям относятся и многие органические вещества, в частности, известные вам продукты взаимодействия аминов с водой и кислотами. Например, соли хлорид метиламмония и хлорид фениламмония являются комплексными соединениями. Согласно координационной теории они имеют следующее строение:

Здесь атом азота – комплексообразователь, атомы водорода при азоте, радикалы метил и фенил – лиганды. Вместе они образуют внутреннюю сферу. Во внешней сфере находятся хлорид-ионы.

Многие органические вещества, имеющие большое значение в жизнедеятельности организмов, представляют собой комплексные соединения. К ним относятся гемоглобин, хлорофилл, ферменты и др.

Комплексные соединения находят широкое применение:

1) в аналитической химии для определения многих ионов;
2) для разделения некоторых металлов и получения металлов высокой степени чистоты;
3) в качестве красителей;
4) для устранения жесткости воды;
5) в качестве катализаторов важных биохимических процессов.

Т.А.ЖУРАВЛЕВА,
учитель химии
гимназии № 272
(г. Санкт-Петербург)