Главная страница «Первого сентября»Главная страница журнала «Химия»Содержание №28/2004

О ЧЕМ НЕ ПИШУТ В УЧЕБНИКАХ

ВОДА. ВОДОРОД

Окончание. Начало см. в № 25–26/2004

История открытия водорода

В течение многих веков от внимания людей ускользало существование газов, этих веществ-невидимок. Лишь постепенно и с трудом укреплялось убеждение, что газы столь же материальны, как и все то, что доступно зрению и осязанию, и что без познания газов, без учета их участия в различных явлениях невозможно понять химическую жизнь мира.
Газ водород был обнаружен Т.Парацельсом в XVI в., когда он погрузил железо в серную кислоту. Но тогда еще и такого понятия не было – газ.
Одна из самых важных заслуг химика XVII в.
Я.Б. ван Гельмонта перед наукой состоит в том, что именно он обогатил человеческий словарь новым словом – «газ», назвав так невидимые вещества, «которые не могут быть ни сохранены в сосудах, ни превращены в видимое тело».
Но вскоре физик Р.Бойль придумал способ собирать и сохранять газы в сосудах. Это очень важный шаг вперед в познании газов, и опыт Бойля заслуживает подробного описания. Он опрокинул бутыль, наполненную разбавленной серной кислотой и железными гвоздями, горлышком в чашку с серной кислотой.
Вот так описал Бойль свое наблюдение: «Тотчас я увидел поднимающиеся воздушные пузырьки, которые, соединяясь, понижали уровень воды, занимая ее место. Скоро вся вода была вытеснена из верхнего сосуда и заменена телом, которое совсем имело вид воздуха». Но здесь Бойль допустил серьезную ошибку. Вместо того чтобы исследовать природу полученного газа, он отождествил этот газ с воздухом.
Впрочем, исправление ошибки Бойля не заставило себя долго ждать. Удивительные свойства газа, впервые собранного Бойлем и столь недопустимо спутанного с воздухом, открыл Н.Лемери, современник Бойля. Вот как описал он свой превосходный опыт: «Когда помещают в колбу средней величины три унции* купоросного масла (серная кислота) с 12 унциями воды и подбрасывают унцию железных опилок, начинается кипение и растворение железа, которое производят бесцветные пары, поднимающиеся к верхней части сосуда. При поднесении к горлышку сосуда зажженной лучинки пар моментально охватывается пламенем и раздается бурный взрыв. Затем пламя гаснет. Если же продолжать подбрасывать железные стружки, сосуд все время будет наполнен пламенем, которое будет проникать и циркулировать до дна сосуда и гореть, как факел, над его горлышком».
«Мне кажется, – восклицает пораженный Лемери, – что эти вспышки представляют в миниатюре горючую материю, которая течет и воспламеняется в облаках, производя громы и молнии».
«Горючий воздух» – отныне это название надолго закрепится за удивительным газом, выделяемым железом из серной кислоты. Надолго, но не навсегда, т. к. это название неправильное, вернее, неточное: горючи и некоторые другие газы. Но если еще долго газ «серной кислоты и железа» исследователи будут путать с другими горючими газами, то никто уже не спутает его, подобно Бойлю, с обыкновенным воздухом.

Г.Кавендиш (1731–1810)
Г.Кавендиш
(1731–1810)

Нашелся человек, который взялся за раскрытие тайны происхождения этого газа. Он не принадлежал к числу химиков-профессионалов, как не были ими многие исследователи его времени, прославившие себя тем не менее великими химическими открытиями. Знатность происхождения обеспечивала ему блестящую карьеру государственного деятеля, а случайно доставшееся богатство открывало все возможности для беспечной жизни. Но лорд Г.Кавендиш пренебрег и тем и другим ради того удовлетворения, которое доставляет проникновение в тайны природы. До нас не дошло даже портрета этого ученого-отшельника, если не считать портретом поневоле приводимую всюду не очень искусную карикатуру. Зато сохранились воспоминания его современников, которые прекрасно заменяют самый искусный портрет, по крайней мере с точки зрения психологической характеристики этой замечательной личности. Вот один из этих рассказов: «Однажды Кавендишу был представлен некий австрийский дворянин, который, по обычаю учтивых людей, начал уверять, что главной причиной его приезда в Лондон была именно надежда познакомиться с одним из величайших украшений его века – величайшим современным естествоиспытателем. Кавендиш не ответил на эту напыщенную речь ни слова, он стоял с опущенными глазами, растерянный и смущенный. Вдруг он замечает просвет в окружающем кольце людей и со всей стремительностью, на которую только был способен, бросается бежать и не успокаивается до тех пор, пока не чувствует себя в безопасности в своей карете, в которой и отправляется домой».
И этот человек, возбуждавший в обществе лишь недоумение, смех и обидное сожаление, в своей лаборатории совершенно преображался: он проявлял необычайное остроумие и находчивость в постановке опытов, терпение и выдержку в достижении поставленных целей – словом, все те качества, которых ему так недоставало в общении с людьми.
Скромность Кавендиша была настолько велика, что из достоинства сделалась недостатком. Он с большими и длительными колебаниями решался на опубликование своих образцовых работ, и некоторые из них так и не увидели света до самой его смерти.
Первая опубликованная в 1766 г. работа Кавендиша посвящена «горючему воздуху». Прежде всего он увеличивает количество способов получения «горючего воздуха». Оказывается, что этот газ получается с одинаковым успехом, если железо заменить цинком или оловом, а серную кислоту соляной. «Горючий воздух», однако, не поддерживает горения, точно так же, как и дыхание животных, которые быстро погибают в его атмосфере. Что говорить относительно взрывчатости «горючего воздуха»? Это свойство проявляется лишь тогда, когда его предварительно смешивают с воздухом.
Уже одних этих чисто качественных наблюдений было бы достаточно, чтобы признать – «горючий воздух» не имеет ничего общего с обыкновенным воздухом, кроме одинакового внешнего вида, или, вернее, кроме отсутствия у того и другого какого-либо «вида» вообще. Но лозунг нашего исследователя гласил: «Все определяется мерой, числом и весом». Следуя этому лозунгу, Кавендиш определил, какой объем «горючего воздуха» выделяется при растворении в кислоте одного и того же количества разных металлов, при какой пропорции смешения «горючего воздуха» с обыкновенным получается взрыв наибольшей силы и, наконец, каков удельный вес «горючего воздуха». Эту последнюю задачу он выполнил при помощи опыта настолько остроумного по своему замыслу, что его невозможно обойти молчанием.

Опыт Г.Кавендиша
Опыт Г.Кавендиша

Кавендиш тщательно взвесил колбу с кислотой и цинком до начала взаимодействия между этими веществами, а затем – после полного растворения цинка. Получилась некоторая убыль в весе, которая, по мнению Кавендиша, как раз соответствовала весу улетучившегося «горючего воздуха». С другой стороны, Кавендишу из опытов было известно, какой объем «горючего воздуха» должен выделиться при полном растворении кусочка цинка данного веса. Деля убыль веса колбы на этот объем, он и получил искомое – удельный вес «горючего воздуха», который оказался необычайно малым. «Горючий газ» исключительно легок, он гораздо легче атмосферного воздуха. Это новая, чрезвычайно важная особенность «горючего воздуха», которая вскоре в руках людей, стоявших ближе к практике, получила замечательное применение.
Так же трудолюбиво и последовательно изучил Кавендиш другие свойства «горючего воздуха», вплоть до измерения силы звука при взрыве его смеси с воздухом. Создается впечатление, что этот неутомимый исследователь не хотел ничего оставить другим. Тем не менее самые трудные вопросы, связанные с «горючим воздухом», оставались невыясненными. Откуда берется «горючий воздух» – из металла или кислоты? Куда он девается или, лучше сказать, во что превращается при горении и взрыве?
Наконец пробил час решения и этих загадок.
Десять лет спустя после опубликования работы Кавендиша, в 1766 г., исследователь по фамилии Маке, сжигая «горючий воздух», сделал интересное наблюдение. Он ввел фарфоровое блюдечко в «горючий воздух», спокойно горевший в горлышке бутыли, и, к своему удивлению, обнаружил, что это пламя не оставляет на блюдечке никакой копоти. При этом он заметил и нечто другое: блюдечко покрылось капельками жидкости, бесцветной, как вода. Полученную жидкость он и его помощник тщательно исследовали и нашли, что это действительно чистая вода.
Пламя без дыма и копоти было слишком удивительным явлением, чтобы не вызвать споров. А.Лавуазье усомнился в том, что при горении «горючего воздуха» получалась вода. Для разрешения своих сомнений он заготовил два больших сосуда, из которых один должен был предоставлять «горючий воздух», а другой – кислород. Оба газа направлялись при помощи трубок с кранами в стеклянный колпак, где и должны были сгореть. Этот знаменательный опыт проводился 24 июня 1783 г. в присутствии нескольких лиц. Результат не вызвал никаких сомнений.
«Полученная вода, послушная всем поверочным испытаниям, какие только можно было придумать,– как рассказывал Лавуазье, – оказалась чистой, подобно дистиллированной; она не красила вытяжки из подсолнечника, ни одним из известных реактивов нельзя было обнаружить в ней даже следов какой-либо примеси... Итак, – заключил Лавуазье, – вода представляет собой не что иное, как окисленный “горючий воздух” или, иначе говоря, непосредственный продукт сгорания “горючего воздуха” – в кислороде, лишенный света и тепла, выделяющихся при сгорании».
При проведении описанного опыта в числе других присутствовал случайно находившийся в Париже секретарь Лондонского королевского общества. Он сообщил, что по ту сторону Ла-Манша еще в 1782 г. сожгли «горючий воздух» в замкнутом пространстве и установили, что при этом действительно получается чистая вода. Кто же опередил замечательного французского химика? Не кто иной, как Кавендиш, который спустя почти двадцать лет возвратился к своей старой теме. Его метод отличался от метода Лавуазье только тем, что он не сжигал водород, а взрывал электрической искрой смесь его с 2,5-кратным объемом воздуха. Взорвав таким образом 500 тыс. гран (1 гран – около 0,06 г) «горючего воздуха», он сумел собрать до 135 гран воды, которая не имела ни вкуса, ни запаха и при испарении досуха не оставляла ни малейшего заметного осадка.
Заметим, что водород вообще легко воспламеняется. Если в воздухе массовая доля водорода составляет 18–68%, то может произойти взрыв. Это было причиной ряда тяжелых аварий. Так, например, в 1937 г. взорвался и сгорел самый большой в мире дирижабль «Гинденбург».
Медлительный Кавендиш обнародовал свой отчет в Лондонском королевском обществе лишь в 1784 г., тогда как Лавуазье изложил свои результаты перед Парижской академией наук 25 июня 1783 г., на целый год опередив своего соперника. В открытии сложного состава воды участвовали кроме Лавуазье и другие лица, в том числе знаменитый английский изобретатель Джеймс Уатт, которому за рубежом неправильно приписывается честь изобретения паровой машины. Но Лавуазье яснее всех выразил великую истину: отныне вода не должна считаться простым веществом, ибо доказано, что она образована соединением «горючего воздуха» с «жизненным воздухом».
Лавуазье, однако, не счел вопрос решенным. Получив воду синтезом, т.е. соединением образующих ее элементов, он захотел осуществить обратное – анализ, т.е. разложение воды на элементы.
Раскаленное в кузнечном горне железо на воздухе окисляется, т. е. присоединяет кислород. Не в состоянии ли оно отнять кислород от воды? Опыт оправдал эту надежду. При пропускании водяного пара над раскаленными железными стружками, помещенными в ружейном стволе, кислород действительно соединяется с железом, и «горючий воздух» освобождается.
Таким образом, теоретические соображения блестяще подтвердились, а попутно открылся новый способ получения «горючего воздуха». Но и на этом дело не кончилось. «Нельзя ли, – спрашивал себя Лавуазье, – получить теперь обратно воду, пропуская “горючий воздух” над раскаленной окисью железа, т.е. заставляя его, в свою очередь, отнимать кислород от окиси железа, вместо того чтобы соединяться со свободным кислородом?» И опять его ожидания увенчались полным успехом: он вновь получил воду и металлическое железо в виде тончайшего порошка.
Теперь известно, что масса атома водорода меньше массы дробинки во столько раз, во сколько раз масса человека меньше массы земного шара. И если 100 млн атомов водорода расположить рядом друг с другом, то они образуют цепочку длиной всего лишь в 1 см.
Доказательством сложного состава воды завершился круг великих химических открытий, сделанных в XVIII в.
В результате горизонты химической науки настолько расширились и прояснились, что появилась необходимость заменить старинные, случайные и несогласованные одни с другими названия различных веществ новыми, которые указывали бы на взаимные отношения этих веществ, на их химическое родство.


*Унция – неметрическая единица массы в англоязычных странах, около 0,03 г. (Примеч. ред.)

П.А.КОШЕЛЬ