Главная страница «Первого сентября»Главная страница журнала «Химия»Содержание №4/2004

ПЕРЕПИСКА С ЧИТАТЕЛЕМ

Коррозия металлов

Коррозия – рыжая крыса,
Грызет металлический лом.

В.Шефнер

Металл служит примером прочности. Недаром, когда хотят подчеркнуть это свойство, говорят: «Прочный как сталь». С понятием «металл» связано представление о чем-то неизменном, прочном, твердом. Но это не всегда так. Под влиянием внешней среды металлы окисляются и в результате разрушаются. Это и называется коррозией.
Какова же причина разрушения металлов? Все они, за исключением золота, серебра и платины, встречаются в природе в виде соединений, которые образуют минералы и горные породы. Существование металлов в свободном состоянии энергетически менее выгодно. Чтобы получить их в чистом виде, необходимо затратить энергию, в основном тепловую. Из естественного природного состояния их переводят в металлическое. Металлы, корродируя, возвращаются в энергетически выгодное состояние оксидов (рис. 1).

Рис. 1. Схема изменения энергии при получении металлов и при коррозии
Рис. 1.
Схема изменения энергии при получении металлов и при коррозии

Коррозия бывает двух видов: химическая и электрохимическая.

Химическая коррозия

Кислород воздуха взаимодействует с поверхностным слоем металла, при этом образуется оксидная пленка. Она образуется в условиях сухого воздуха и при комнатной температуре, и при нагревании. Такую коррозию называют химической. Пленка может быть прочной и препятствовать дальнейшему процессу коррозии. Такие прочные пленки образуются на поверхности алюминия и цинка. Но есть и рыхлые пленки, которые не предохраняют металл от разрушения, как, например, у оксидов щелочных металлов. Так, поверхность только что отрезанного кусочка натрия на глазах мутнеет, образуется рыхлая, с трещинами пленка, свободно пропускающая к поверхности металла кислород воздуха, а также другие газы и пары воды.
Быстрое окисление на воздухе металлического натрия или кальция – пример химической коррозии.
Проведем опыт по исследованию пленок. Очистим поверхность металлической пластинки и начнем нагревать. Постепенно на поверхности появляются так называемые цвета побежалости, т. е. поверхность пластинки окрашивается во все цвета радуги. Это появляются пленки различной толщины, они по-разному преломляют свет.
Протекающие при химической коррозии окислительно-восстановительные процессы осуществляются путем непосредственного перехода электронов на окислитель. Примерами химической коррозии являются реакции металлов с кислородом, хлором, оксидами серы.
В результате такой коррозии сильно разрушаются многие важные детали инженерных конструкций (газовые турбины, сопла ракетных двигателей, арматура печей и т. д.).

Электрохимическая коррозия

Этот вид коррозии проходит в среде, проводящей электрический ток.
Многие металлические предметы, которые мы используем в быту, не подвергаются видимой коррозии, в то время как потерянный ключ быстро ржавеет. Следовательно, электрохимическая коррозия зависит от внешних условий (состава и концентрации электролита). Скорость разрушения разных металлов различна.
Электрохимическая коррозия наблюдается и в том случае, когда контактируют металлы, находящиеся в ряду напряжений на некотором расстоянии друг от друга. Так, если при изготовлении изделия из листового железа используют медные заклепки, то в присутствии влаги они будут играть роль катода, а железный лист станет анодом и, следовательно, будет разрушаться.
Коррозионное разрушение металла в растворах электролитов можно рассматривать как результат работы большого количества микроскопических гальванических элементов, у которых катодами служат посторонние примеси в металле, а анодом сам металл.
Для работы гальванического элемента необходимо наличие двух металлов различной химической активности и среды, проводящей электрический ток, – электролита. При этом сила проявляющегося тока тем больше, чем дальше стоят металлы в ряду напряжений друг от друга. Поток электронов идет от более активного металла к менее активному, являющемуся катодом. В этих случаях химическая энергия окислительно-восстановительных процессов гальванического элемента переходит в электрическую.

Примеры коррозии

1. Консервная банка (луженое железо) представляет собой гальваническую пару железо–олово. Пока банка герметически закрыта, контактная пара не находится в среде, проводящей электрический ток, и банка может не подвергаться коррозии длительное время. Известен случай, когда консервная банка пролежала в земле около ста лет и не подверглась коррозии. Но стоит банку вскрыть, как незамедлительно начинается всепожирающий процесс коррозии. При этом электроны от железа, как более активного металла, переходят на олово. Между поверхностью оловянного покрытия и раствором возникает разность потенциалов. Ионы водорода из воды или кислоты собираются на поверхности малоактивного металла, где восстанавливаются с помощью электронов, идущих от растворяющегося железа. Чем более кислый раствор, тем коррозия интенсивней. В этом случае «работает» гальванический элемент. Железо служит растворимым анодом, а олово – катодом:

анод: Fe0 – 2e = Fe2+,
катод: 2Н+ + 2e = Н2.

Ржавление железа – сложный процесс, в результате которого на поверхности образуется ржавчина. Упрощенный состав ржавчины, рыхлой массы красно-коричневого цвета, – гидроксид железа(III):

Fe2+ + 2OH = Fe(OH)2,
4Fe(OH)2 + O2 + 2H2O = 4Fe(OH)3.

2. Основа оцинкованного ведра – железо, поверхность – серебристо-белый блестящий металл. По мере использования поверхность ведра покрывается буровато-беловатыми пятнами, разводами. Цинк в данной гальванической паре, как более активный металл, будет являться анодом и в присутствии среды, проводящей электрический ток, будет разрушаться, железо же не ржавеет. Поэтому оцинкованные ведра сравнительно недороги и служат долго.
Состав бело-бурых пятен – в основном гидроксид цинка. Химизм процесса:

анод: Zn0 – 2e = Zn2+,
катод: 2Н+ + 2e = Н2.

Zn2+ + 2OH = Zn(OH)2.

«Стригущий лишай цинковых покрытий» – это картина одного из видов коррозии цинка, внешне очень похожая на известное грибковое заболевание. Замечено, что в помещениях цинк корродирует быстрее, чем на открытой ветрам и дождям оцинкованной крыше. Происходит это потому, что продукты коррозии (оксид, гидроксид и карбонат цинка) не смываются дождями. Образовавшиеся отложения «белой ржавчины» впитывают влагу, и на оцинкованной поверхности разрастаются светлые пятна.
Интересно еще одно обстоятельство: мягкая вода вызывает более сильную коррозию этого металла, чем вода, содержащая в большом количестве соли жесткости. Жесткая вода действует менее агрессивно,  т. к. осадок карбонатов образует на цинковой поверхности довольно прочное защитное покрытие.

Исходя из положения элемента в периодической системе, можно заранее сказать, какими химическими, а следовательно, и коррозионными свойствами он обладает. Под термином «коррозионные свойства» понимается, как легко данный элемент окисляется, какова устойчивость образующихся оксидов по отношению к воде, растворам солей и различных газов.
Так, в I группе в побочной подгруппе расположены металлы, весьма стойкие в коррозионном отношении. Это медь, серебро, золото, причем их коррозионная стойкость повышается с увеличением атомной массы.
Во II группе также более устойчивы металлы побочной подгруппы: цинк, кадмий, ртуть. На их поверхности в присутствии кислорода образуется тонкая, довольно прочная пленка оксидов, предохраняющая от дальнейшего процесса разрушения.
В III группе из технически важных металлов находится алюминий – это химически активный металл. Он легко окисляется кислородом воздуха, вследствие чего на его поверхности образуется тонкая стекловидная пленка. Но эта пленка обладает высокими защитными свойствами.
В IV группе находятся коррозионностойкие металлы – олово, свинец, стойкость которых тоже объясняется образованием прочных защитных пленок.
Металлы, находящиеся в четных рядах больших периодов, в V, VI и VII группах, обладают высокой способностью к пассивации, а следовательно, большой коррозийной стойкостью. Это ванадий, хром, кобальт и др.
Наиболее коррозионностойкие металлы находятся в VIII группе, причем чем больше их атомная масса, тем больше их устойчивость. Следовательно, из металлов VIII группы наиболее коррозионностойкие осмий, иридий и платина.
Коррозия приводит к техногенному засорению нашей планеты. В настоящее время на земном шаре ежегодно выплавляется более 0,7 млрд т стали, а уничтожается коррозией от 10 до 25% этой величины. Средняя продолжительность жизни стальных изделий составляет около 15 лет. Таков же средний возраст изделий из многих цветных и черных металлов.
Знаменитая Эйфелева башня (7,3 тыс. т металлических конструкций) давно была бы уничтожена коррозией, если бы каждые 7 лет ее не покрывали краской. На окраску уже затрачены средства, превышающие стоимость самого сооружения.
Коррозия, подобно ненасытному дракону, сжирает миллиарды тонн железа и приносит громадный ущерб во всех странах. Никакие предохранительные покрытия, смазки, лаки, краски, использование сплавов не могут предотвратить болезни металлов – окисление, распыление, ржавление.
Все применяемые методы защиты металлов можно разделить на три группы:

Статья подготовлена при поддержке компании ООО «ВторМеталл Плюс». Если вам нужно избавиться от чугунной ванны или прочего металлолома, то оптимальным решением станет обратиться в компанию «ВторМеталл Плюс». На сайте, расположенном по адресу "www.Vivoz-Loma.Ru", вы сможете, не отходя от экрана монитора, узнать, где расположены пункты приема металлолома, а также заказать демонтаж и вывоз металлолома. В компании «ВторМеталл Плюс» работают только высококвалифицированные специалисты, которые в кратчайшие сроки произведут требуемые работы по демонтажу и вывозу металлолома.

1) различные покрытия;
2) обработка среды, в которой металлы находятся;
3) электрохимические методы защиты.

Опыт.
В U-образную трубку наливают до половины ее объема раствор поваренной соли. В каждое колено трубки добавляют несколько капель фенолфталеина. В одно колено трубки погружают предварительно очищенную медную пластинку, а в другое – цинковую.
Обе пластинки соединяют медной проволокой (рис. 2). Вскоре в колене с медной пластинкой наблюдается сначала розовое, а затем малиновое окрашивание, что указывает на появление избыточных свободных гидроксидных групп (ОН).

Рис. 2. Медно-цинковый гальванический элемент

Рис. 2.
Медно-цинковый
гальванический элемент

В этом опыте при соединении проволокой цинковой пластинки с медной избыточные электроны, образующиеся вследствие перехода цинка в виде ионов в раствор, перетекают с цинковой пластинки на медную. Возникает гальванический элемент. С медной пластинки электроны переходят на ионы водорода. В растворе образуется избыток гидроксид-ионов, которые и дают щелочную реакцию. Иными словами, происходит окислительно-восстановительная реакция, в результате которой возникает электрический ток. Поток электронов движется от цинка (анода) к меди (катоду). Цинк окисляется (растворяется), а на меди наблюдается восстановление ионов водорода (видны пузырьки).

М.А.ЛИПАЕВА,
учитель химии
(г. Электросталь)

Рейтинг@Mail.ru