Главная страница «Первого сентября»Главная страница журнала «Химия»Содержание №48/2000

РАДИОАКТИВНЫЕ ОТХОДЫ

Радиоактивные отходы (РАО) – побочные продукты технической деятельности, содержащие биологически опасные радионуклиды. РАО образуются:

  • на всех этапах атомной энергетики (от производства топлива до работы ядерных энергетических установок (ЯЭУ), в том числе атомных электростанций (АЭС);
  • при производстве, использовании и уничтожении ядерного оружия при производстве и применении радиоактивных изотопов.

РАО классифицируют по различным признакам (рис. 1): по агрегатному состоянию, по составу (виду) излучения, по времени жизни (периоду полураспада Т1/2), по активности (интенсивности излучения).

Среди РАО наиболее распространенными по агрегатному состоянию считаются жидкие и твердые, в основном возникающие при работе атомных электростанций, других ЯЭУ и на радиохимических заводах по получению и переработке ядерного топлива. Газообразные РАО образуются в основном при работе АЭС, радиохимических заводов по регенерации топлива, а также при пожарах и других аварийных ситуациях на ядерных объектах.

Радионуклиды, содержащиеся в РАО, претерпевают спонтанный (самопроизвольный) распад, при котором происходит один (или последовательно несколько) из видов излучений: a-излучение (поток a-частиц – дважды ионизированных атомов гелия), b-излучение (поток электронов), g-излучение (жесткое коротковолновое электромагнитное излучение), нейтронное излучение.

Для процессов радиоактивного распада характерен экспоненциальный закон уменьшения во времени числа радиоактивных ядер, при этом продолжительность жизни радиоактивных ядер характеризуется периодом полураспада Т1/2 – промежутком времени, за который число радионуклидов уменьшится в среднем наполовину. Периоды полураспада некоторых радиоизотопов, образующихся при распаде основного ядерного топлива – урана-235 – и представляющих наибольшую опасность для биологических объектов, приведены в таблице.

Таблица

Периоды полураспада некоторых радиоизотопов

США, активно проводившие в свое время испытания атомного оружия в Тихом океане, использовали один из островов для захоронения РАО. Складируемые на острове контейнеры с плутонием были закрыты мощными железобетонными панцирями с надписями-предостережениями, видимыми за несколько миль: держаться подальше от этих мест в течение 25 тыс. лет! (Напомним, что возраст человеческой цивилизации – 15 тыс. лет.) Некоторые контейнеры под влиянием непрекращающихся радиоактивных распадов разрушились, уровень радиации в прибрежных водах и донных породах превышает допустимые нормы и опасен для всего живого.

Радиоактивные излучения вызывают ионизацию атомов и молекул вещества, в том числе вещества живых организмов. Механизм биологического действия радиоактивных излучений сложен и до конца не изучен. Ионизация и возбуждение атомов и молекул в живых тканях, происходящие при поглощении ими излучений, лишь начальный этап в сложной цепи последующих биохимических превращений. Установлено, что ионизация приводит к разрыву молекулярных связей, изменению структуры химических соединений и в конечном итоге к разрушению нуклеиновых кислот и белка. Под действием радиации поражаются клетки, прежде всего их ядра, нарушаются способность клеток к нормальному делению и обмен веществ в клетках.

Наиболее чувствительны к радиационному воздействию кроветворные органы (костный мозг, селезенка, лимфатические железы), эпителий слизистых оболочек (в частности, кишечника), щитовидная железа. В результате действия радиоактивных излучений на органы возникают тяжелейшие заболевания: лучевая болезнь, злокачественные опухоли (нередко со смертельным исходом). Облучение оказывает сильное влияние на генетический аппарат, приводя к появлению потомства с уродливыми отклонениями или врожденными заболеваниями.

 

Рис. 2

Специфической особенностью радиоактивных излучений является то, что они не воспринимаются органами чувств человека и даже при смертельных дозах не вызывают у него болевых ощущений в момент облучения.

Степень биологического воздействия радиации зависит от вида излучения, его интенсивности и продолжительности воздействия на организм.

Единица радиоактивности в системе единиц СИ – беккерель (Бк): 1 Бк соответствует одному акту радиоактивного распада в секунду (внесистемная единица – кюри (Ки): 1 Ки = 3,7•1010 актов распада за 1 с).

Поглощенная доза (или доза излучения) – энергия любого вида излучения, поглощенная 1 кг вещества. Единица измерения дозы в системе СИ – грей (Гр): при дозе 1 Гр в 1 кг вещества при поглощении радиации выделяется энергия в 1 Дж (внесистемная единица – рад: 1 Гр = 100 рад, 1 рад = 1/100 Гр).

Радиоактивная чувствительность живых организмов и их органов различна: смертельная доза для бактерий составляет 104 Гр, для насекомых – 103 Гр, для человека – 10 Гр. Максимальная доза излучения, не причиняющая вреда организму человека при многократном действии, – 0,003 Гр в неделю, при единовременном действии – 0,025 Гр.

Эквивалентная доза излучения – основная дозиметрическая единица в области радиационной безопасности, введена для оценки возможного ущерба здоровью человека от хронического воздействия. Единица эквивалентной дозы в системе СИ – зиверт (Зв): 1 Зв – доза излучения любого вида, производящая такое же действие, как образцовое рентгеновское излучение в 1 Гр, или в 1 Дж/кг, 1 Зв = 1 Гр = 1 Дж/кг (внесистемная единица – бэр (биологический эквивалент рентгена), 1 Зв = 100 бэр, 1 бэр = 1/100 Зв).

Энергия источника ионизирующего излучения (ИИИ) измеряется обычно в электронвольтах (эВ): 1 эВ = 1,6•10–19 Дж, для человека допустимо получать в год от ИИИ не более 250 эВ (разовая доза – 50 эВ).

Единица измерения рентген (Р) используется для характеристики состояния среды, подвергнувшейся радиоактивному загрязнению: 1 Р соответствует образованию в 1 см3 воздуха при нормальных условиях 2,082 млн пар ионов обоих знаков, или 1 Р = 2,58•10–4 Кл/кг (Кл – кулон).

Естественный радиоактивный фон – допустимая мощность эквивалентной дозы от естественных источников радиации (поверхности Земли, атмосферы, воды и т. д.) составляет в России 10–20 мкР/ч (10–20 мкбэр/ч, или 0,1–0,2 мкЗв/ч).

Радиоактивное заражение имеет глобальный характер не только по пространственным масштабам своего влияния, но и по времени действия, угрожая жизни людей в течение многих десятилетий (последствия кыштымской и чернобыльской аварий) и даже столетий. Так, основная «начинка» атомных и водородных бомб – плутоний-239 (Рu-239) – имеет период полураспада 24 тыс. лет. Даже микрограммы этого изотопа, попав в организм человека, вызывают раковые заболевания различных органов; три «апельсина» из плутония-239 потенциально могут уничтожить все человечество без всяких ядерных взрывов.

Ввиду безусловной опасности РАО для всех живых организмов и для биосферы в целом они нуждаются в дезактивации и (или) тщательном захоронении, что до сих пор является нерешенной проблемой. Проблема борьбы с радиоактивным загрязнением окружающей среды выдвигается на первый план среди других экологических проблем ввиду его огромных масштабов и особо опасных последствий. По мнению известного эколога А.В.Яблокова, «экологическая проблема № 1 в России – ее радиоактивное заражение».

Неблагоприятная радиологическая обстановка в отдельных регионах мира и России – результат прежде всего многолетней гонки вооружений в период холодной войны и создания оружия массового поражения.

Для производства оружейного плутония (Рu-239) в 1940-е гг. были построены первые ЯЭУ – реакторы (для атомного оружия требуются десятки тонн Рu-239; одну тонну этой «взрывчатки» производит ядерный реактор на медленных нейтронах мощностью 1000 МВт – такую мощность имеет один блок обычной АЭС типа Чернобыльской). Испытания ядерными державами (США, СССР, а затем Россией, Францией и другими странами) ядерного оружия в атмосфере и под водой, подземные ядерные взрывы в «мирных» целях, на которые сейчас наложен мораторий, привели к сильному загрязнению всех компонентов биосферы.

По программе «Мирный атом» (термин предложен американским президентом Д.Эйзенхауэром) в 1950-е гг. строительство АЭС началось сначала в США и СССР, а затем и в других странах. В настоящее время доля АЭС в производстве электрической энергии в мире составляет 17% (в структуре электроэнергетики России на долю АЭС приходится 12%). В России девять АЭС, из которых восемь расположены в европейской части страны (все станции были построены еще в период существования СССР), в том числе самая крупная – Курская – мощностью 4000 МВт.

Помимо арсенала ядерного оружия (бомб, мин, боеголовок), ЯЭУ, производящих взрывчатое вещество, и АЭС, источниками радиоактивного заражения окружающей среды в России (и на прилегающих к ней территориях) являются:

  • атомный ледокольный флот, самый мощный в мире;
  • подводные и надводные военные корабли с силовыми ЯЭУ (и несущие ядерное оружие);
  • судоремонтные и судостроительные заводы таких кораблей;
  • предприятия, занимающиеся переработкой и утилизацией радиоактивных отходов военно-промышленного комплекса (в том числе списанных подводных лодок) и АЭС;
  • затонувшие атомные корабли;
  • космические аппараты с ЯЭУ на борту;
  • места захоронения РАО.

К этому перечню следует добавить, что до сих пор радиационная обстановка в России определяется последствиями аварий, произошедших в 1957 г. на производственном объединении (ПО) «Маяк» (Челябинск-65) в Кыштыме (Южный Урал) и в 1986 г. на Чернобыльской АЭС (ЧАЭС)1.

До сих пор радиоактивному загрязнению в результате аварии на Чернобыльской АЭС подвержены сельскохозяйственные угодья в Республике Мордовия и 13 областях Российской Федерации на площади 3,5 млн га. (О последствиях кыштымской аварии сказано ниже.)

Общая площадь радиационно дестабилизированной территории России превышает 1 млн км2 с числом проживающих на ней более 10 млн человек. В настоящее время на территории России суммарная активность незахороненных РАО составляет более 4 млрд Ки, что эквивалентно по последствиям восьмидесяти чернобыльским катастрофам.

Наиболее неблагоприятная радиационная экологическая обстановка сложилась на севере европейской территории России, в Уральском районе, на юге Западно- и Восточно-Сибирского районов, в местах базирования Тихоокеанского флота.

Мурманская область по количеству ядерных объектов на душу населения превосходит все другие области и страны. Здесь широко распространены объекты, применяющие различные ядерные технологии. Из гражданских объектов это прежде всего Кольская АЭС (КАЭС), имеющая четыре энергоблока (два из них приближаются к выработке ресурса). Около 60 предприятий и учреждений используют различные радиоизотопные приборы технологического контроля. К мурманскому «Атомфлоту» приписано семь ледоколов и один лихтеровоз, на которых установлено 13 реакторов.

Основное количество ядерных объектов связано с вооруженными силами. Северный флот имеет на своем вооружении 123 атомных судна с 235 ядерными реакторами; береговые батареи включают в общей сложности 3–3,5 тыс. ядерных боеголовок.

Добыча и переработка ядерного сырья проводится на Кольском полуострове двумя специализированными горно-обогатительными комбинатами. Радиоактивные отходы, образующиеся при производстве ядерного топлива, при эксплуатации КАЭС и судов с ЯЭУ, накапливаются непосредственно на территории КАЭС и на специальных предприятиях, в том числе на военных базах. Низкоактивные РАО с гражданских предприятий захораниваются под Мурманском; отходы с КАЭС после выдержки на станции направляются на переработку на Урал; часть РАО военного флота временно хранится на плавучих базах.

Принято решение о создании специальных могильников РАО для нужд региона, в которых будут захораниваться уже накопленные отходы и вновь образующиеся, в том числе те, что будут образовываться при выводе из эксплуатации первой очереди КАЭС и судовых ЯЭУ.

В Мурманской и Архангельской областях ежегодно образуется до 1 тыс. м3 твердых и 5 тыс. м3 жидких РАО. Указанный уровень отходов удерживается последние 30 лет.

С конца 1950-х гг. по 1992 г. Советским Союзом в Баренцевом и Карском морях были захоронены твердые и жидкие РАО суммарной активностью 2,5 млн Ки, в том числе 15 реакторов с атомных подводных лодок (АПЛ), три реактора с ледокола «Ленин» (из них 13 аварийных реакторов АПЛ, в том числе шесть с невыгруженным ядерным топливом). Затопление ядерных реакторов и жидких РАО происходило и на Дальнем Востоке: в Японском и Охотском морях и у берегов Камчатки.

Опасную радиологическую обстановку создают аварии на АПЛ. Из них наиболее известная, получившая мировой резонанс, трагедия АПЛ «Комсомолец» (7 апреля 1989 г.), в результате которой погибло 42 члена экипажа, а лодка легла на грунт на глубине 1680 м вблизи острова Медвежий в Баренцевом море в 300 морских милях от побережья Норвегии. В активной зоне реактора лодки содержится примерно 42 тыс. Ки стронция-90 и 55 тыс. Ки цезия-137. Кроме того, на лодке есть ядерные боезапасы с плутонием-239.

Район северной Атлантики, где произошла катастрофа, – один из наиболее биологически продуктивных в Мировом океане, имеет особое экономическое значение и входит в сферу интересов России, Норвегии и ряда других стран. Результаты анализов показали, что пока выход радионуклидов с лодки во внешнюю среду незначителен, но в районе затопления формируется зона загрязнения. Этот процесс может иметь импульсный характер, особенно опасно при этом загрязнение плутонием-239, содержащимся в боезарядах лодки. Перенос радионуклидов по трофической цепи морская вода–планктон–рыба грозит серьезными экологическими и политико-экономическими последствиями.

На Южном Урале в Кыштыме расположено ПО «Маяк» (Челябинск-65), где с конца 1940-х гг. производится регенерация отработанного ядерного топлива. До 1951 г. возникающие в ходе переработки жидкие РАО просто сливались в речку Теча. Через сеть рек: Теча–Исеть–Обь – происходил вынос радиоактивных веществ в Карское море и с морскими течениями в другие моря Арктического бассейна. Хотя впоследствии такой сброс был прекращен, спустя более 40 лет концентрация радиоактивного стронция-90 на отдельных участках реки Теча превышала фоновую в 100–1000 раз. С 1952 г. ядерные отходы стали сбрасывать в озеро Карачай (названное техническим водоемом № 3) площадью в 10 км2. За счет тепла, выделяемого отходами, озеро в конце концов пересохло. Началась засыпка озера грунтом и бетоном; для окончательной засыпки, по расчетам, еще потребуется ~800 тыс. м скального грунта при стоимости работ 28 млрд рублей (в ценах 1997 г.). Однако под озером образовалась линза, заполненная радионуклидами, суммарная активность которых составляет 120 млн Ки (почти в 2,5 раза выше, чем активность излучения при взрыве 4-го энергоблока ЧАЭС).

Недавно стало известно, что в 1957 г. на ПО «Маяк» произошла серьезная радиационная авария: в результате взрыва емкости с РАО образовалось облако с радиоактивностью 2 млн Ки, растянувшееся на 105 км в длину и 8 км в ширину. Серьезному радиационному заражению (примерно 1/3 чернобыльского) подверглась площадь в 15 тыс. км2, на которой проживало более 200 тыс. человек. На радиационно зараженной территории был создан заповедник, где в течение десятков лет проводились наблюдения за живым миром в условиях повышенной радиации. К сожалению, данные этих наблюдений считались секретными, что не позволило дать необходимые медико-биологические рекомендации при ликвидации аварии на ЧАЭС. Аварии на «Маяке» происходили много раз, последняя по времени – в 1994 г. Тогда же в результате частичного разрушения хранилища РАО вблизи Петропавловска-Камчатского произошло временное повышение радиации по сравнению с фоновой в 1000 раз.

До сих пор на ПО «Маяк» ежегодно образуется до 100 млн Ки жидких РАО, часть которых просто сбрасывают в поверхностные водоемы. Твердые РАО складывают в могильники траншейного типа, не отвечающие требованиям безопасности, в результате чего радиоактивно загрязнено более 3 млн га земель. В зоне влияния ПО «Маяк» уровни радиоактивного загрязнения воздуха, воды и почвы в 50–100 раз выше средних значений по стране; отмечено возрастание количества онкологических заболеваний и детских лейкозов. На предприятии начаты строительство комплексов по остекловыванию высокоактивных и битумированию среднеактивных РАО, а также опытная эксплуатация металлобетонного контейнера для долговременного хранения отработанного ядерного топлива реакторов серии РБМК-1000 (подобного типа реакторы были установлены на ЧАЭС).

Суммарная радиоактивность имеющихся РАО в челябинской зоне, по некоторым оценкам, достигает огромной цифры – 37 млрд ГБк. Этого количества достаточно, чтобы превратить всю территорию бывшего СССР в аналог чернобыльской зоны отселения.

Другой очаг «радиоактивной напряженности» в стране – горно-химический комбинат (ГХК) по производству оружейного плутония и переработке РАО, расположенный в 50 км от Красноярска. На поверхности это город без определенного официального названия (Соцгород, Красноярск-26, Железногорск) со 100-тысячным населением; сам комбинат расположен глубоко под землей. Кстати, подобные объекты имеются (по одному) в США, Великобритании, Франции; ведется строительство такого объекта в Китае. О Красноярском ГХК, естественно, мало что известно, кроме того, что переработка ввозимых из-за границы РАО приносит доход 500 тыс. долларов за 1 т отходов. По свидетельству специалистов, радиационная обстановка на ГХК измеряется не в мкР/ч, а в мР/с! В течение десятков лет комбинат закачивает жидкие РАО в глубинные горизонты (по данным на 1998 г., их закачено ~50 млн м3 с активностью 800 млн Ки), что грозит негативными последствиями как окрестностям Красноярска, так и Енисею – влияние сброса ГХК на воды Енисея прослеживается на расстоянии свыше 800 км.

Впрочем, захоронение высокоактивных РАО в подземные горизонты применяется и в других странах: в США, например, захоронение РАО производят в глубоких соляных копях, а в Швеции – в скальных породах.

Радиоактивное загрязнение окружающей среды атомными электростанциями возникает не только в результате чрезвычайных обстоятельств, а достаточно регулярно. Например, в мае 1997 г. во время технологического ремонта на Курской АЭС произошла опасная утечка в атмосферу цезия-137.

Предприятия атомной отрасли промышленности имеют дело с производством, применением, хранением, транспортировкой и захоронением радиоактивных веществ. Другими словами, образование РАО сопровождает все этапы топливного цикла атомной энергетики (рис. 2), что предъявляет особые требования к обеспечению радиационной безопасности.

Урановую руду добывают на рудниках подземным или открытым способом. Природный уран представляет собой смесь изотопов: урана-238 (99,3%) и урана-235 (0,7%). Поскольку основным ядерным горючим является уран-235, после первичной переработки руда поступает на обогатительный завод, где содержание урана-235 в руде доводится до 3–5%. Химическая переработка топлива заключается в получении обогащенного гексафторида урана 235UF6 для последующего производства твэлов (тепловыделяющих элементов).

Рис. 2

Разработка урановых месторождений, как и любая другая отрасль горнодобывающей промышленности, ухудшает окружающую среду: выводятся из хозяйственного пользования значительные территории, изменяются ландшафт и гидрологический режим, происходит загрязнение воздуха, почвы, поверхностных и подземных вод радионуклидами. Количество РАО на стадии первичной переработки природного урана очень велико и составляет 99,8%. В России добыча и первичная переработка урана осуществляется только на одном предприятии – Приаргунском горно-химическом объединении. На всех работавших до последнего времени предприятиях по добыче и переработке урановых руд в отвалах и хвостохранилищах находится 108 м3 РАО с активностью 1,8•105 Ки.

Твэлы, представляющие собой металлические стержни, в которых находится ядерное топливо (3% урана-235), размещаются в активной зоне реактора АЭС. Возможны различные виды цепных реакций деления урана-235 (различие в образующихся осколках и числе испускаемых нейтронов), например, такие:

235U + 1n ® 142Ba + 91Kr + 31n,
235U + 1n
® 137Te + 97Zr + 21n,
235U + 1n
® 140Xe + 94Sr + 21n.

Тепло, выделяющееся при делении урана, нагревает воду, протекающую через активную зону и омывающую стержни. Примерно через три года содержание урана-235 в твэлах снижается до 1%, они становятся неэффективными источниками тепла и требуют замены. Каждый год треть твэлов удаляется из активной зоны и заменяется новыми: для типичной АЭС с мощностью 1000 МВт это означает ежегодное удаление 36 т твэлов.

В ходе ядерных реакций твэлы обогащаются радионуклидами – продуктами деления урана-235, а также (через серию b-распадов) плутонием-239:

238U + 1n ® 239U(b) ® 239Np(b) ® 239Pu.

Отработанные твэлы транспортируются из активной зоны по подводному каналу в хранилища, заполненные водой, где хранятся в стальных пеналах несколько месяцев, пока большинство высокотоксичных радионуклидов (в частности, наиболее опасный йод-131) не распадется. После этого твэлы направляются на заводы по регенерации топлива, например для получения плутониевых сердечников для ядерных реакторов на быстрых нейтронах или оружейного плутония.

Жидкие отходы ядерных реакторов (в частности, вода первого контура, которая должна обновляться) после переработки (выпаривания) помещают в бетонные хранилища, расположенные на территории АЭС.

Определенное количество радионуклидов при работе АЭС выделяется в воздух. Радиоактивный йод-135 (один из главных продуктов распада в работающем реакторе) не накапливается в отработанном ядерном топливе, поскольку его период полураспада составляет всего 6,7 ч, но в результате последующих радиоактивных распадов превращается в радиоактивный газ ксенон-135, активно поглощающий нейтроны и потому препятствующий цепной реакции. Для предотвращения «ксенонового отравления» реактора ксенон удаляют из реактора через высокие трубы.

Об образовании отходов на этапах переработки и хранения отработанного ядерного топлива уже говорилось. К сожалению, все существующие и применяемые в мире методы обезвреживания РАО (цементирование, остекловывание, битумирование и др.), а также сжигание твердых РАО в керамических камерах (как на НПО «Радон» в Московской области) неэффективны и представляют значительную опасность для окружающей среды.

Особенно острой проблема утилизации и захоронения РАО атомных электростанций становится в настоящее время, когда наступает время демонтажа большинства АЭС в мире (по данным МАГАТЭ2, это более 65 реакторов АЭС и 260 реакторов, использующихся в научных целях). Отметим, что за время работы АЭС все элементы станции становятся радиоактивно опасными, особенно металлические конструкции зоны реакторов. Демонтаж АЭС по стоимости и срокам сравним с их строительством, при этом до сих пор нет приемлемой научно-технической и экологической технологии проведения демонтажа. Альтернатива демонтажу – герметизация станции и ее охрана в течение 100 и более лет.

Еще до прекращения пожара на ЧАЭС началась прокладка туннеля под реактор, создание под ним выемки, которую затем заполнили многометровым слоем бетона. Бетоном был залит и блок, и прилегающие к нему территории – это «чудо строительства» (и пример героизма без кавычек) ХХ в. получило название «саркофаг». Взорвавшийся 4-й энергоблок ЧАЭС до сих пор представляет собой крупнейшее в мире и опаснейшее плохо обустроенное хранилище РАО!

При использовании радиоактивных материалов в медицинских и других научно-исследовательских учреждениях образуется значительно меньшее количество РАО, чем в атомной отрасли промышленности и военно-промышленном комплексе – это несколько десятков кубических метров отходов в год. Однако применение радиоактивных материалов расширяется, а вместе с ним возрастает объем отходов.

Проблема РАО – составная часть «Повестки дня на XXI век»», принятой на Всемирной встрече на высшем уровне по проблемам Земли в Рио-де-Жанейро (1992) и «Программы действий по дальнейшему осуществлению “Повестки дня на ХХI век”», принятой Специальной сессией Генеральной Ассамблеи Организации Объединенных Наций (июнь 1997 г.). В последнем документе, в частности, намечена система мер по совершенствованию методов обращения с радиоактивными отходами, по расширению международного сотрудничества в этой области (обмен информацией и опытом, помощь и передача соответствующих технологий и др.), по ужесточению ответственности государств за обеспечение безопасного хранения и удаления РАО.

В «Программе действий...» констатируется ухудшение общих тенденций в области устойчивого развития мира, но выражается надежда, что к следующему международному экологическому форуму, намеченному на 2002 год, будет отмечен осязаемый прогресс в обеспечении устойчивого развития, направленного на создание благоприятных условий жизни будущих поколений.

Е.Э.Боровский

________________________________
1Все приведенные ниже данные взяты из материалов открытых публикаций в государственных докладах «О состоянии окружающей природной среды Российской Федерации» Государственного комитета РФ по охране окружающей среды и в российской экологической газете «Зеленый мир» (1995–1999 гг.).
2Международное агентство по атомной энергии.