Главная страница «Первого сентября»Главная страница журнала «Химия»Содержание №24/1999

Закономерности в мире стабильных изотопов

Как известно, изотопами называются разновидности атомов химического элемента, в ядрах которых содержатся одинаковые количества протонов (Z) и различные – нейтронов (N). Сумма А = Z + N – массовое число – служит важнейшей характеристикой изотопа. Явление изотопии открыл в декабре 1913 г. английский радиохимик Ф.Содди у радиоактивных элементов конца периодической системы. Затем оно было обнаружено у стабильных элементов. Подробнее об истории изотопии см. работы [1–3].

Естественные радиоактивные изотопы группируются в три «семейства», родоначальниками которых являются долгоживущие торий-232, уран-238 и уран-235 (их периоды полураспада измеряются миллиардами лет). Завершаются «семейства» стабильными изотопами свинца (Z = 82) с А = 208, 206 и 207 соответственно. В промежутках располагаются короткоживущие изотопы элементов с Z = 81–92, связанные «цепочками» a- и b-распадов [4]. Общее количество членов «семейств» (исключая стабильные разновидности атомов свинца) равно 41.

Посредством различных ядерных реакций было синтезировано более 1600 искусственных изотопов в интервале Z от 1 до 112 (причем для некоторых элементов более 20).

Предметом нашего внимания станут стабильные изотопы. Основная заслуга в их открытии принадлежит английскому физику Ф.Астону. В 1919 г. он установил, что инертный газ неон (атомный вес – 20,2) является смесью двух изотопов с атомными весами 20 и 22. Ученый проводил исследования на протяжении полутора десятилетий и обнаружил 210 стабильных изотопов большинства элементов. Немалый вклад принадлежит американскому ученому А.Демпстеру – 37 изотопов. В работах принимали участие и другие исследователи, но большинство ограничивалось констатацией одного-двух новых видов атомов. Важным событием стало открытие в 1929 г. изотопов кислорода с А, равным 17 и 18, У.Джиоком и Г.Джонстоном (США); Астон же ранее полагал, что существует только 16О. Наличие у кислорода трех изотопов повлияло на выбор шкалы атомных весов [5, 6]. В 1932 г. Г.Юри, Ф.Брикведде и Г.Мэрфи (США) обнаружили тяжелый изотоп водорода – дейтерий с А = 2. Последним по времени обнаружения (1949) оказался ванадий-50.

Сведения о стабильных изотопах приведены в таблице (см. с. 2). Некоторые из них помечены «звездочкой» (калий-40, ванадий-50, рубидий-87, индий-115, сурьма-123, лантан-138, церий-142, неодим-144, самарий-147, лютеций-176, рений-187, платина-190 и свинец-204): у них обнаружены (или возможны теоретически) b-радиоактивность или a-радиоактивность (Се, Nd, Sm, Pt) c очень большими периодами (> 1015 лет). Однако фактически их можно рассматривать как стабильные. В таблицу включены также радиоактивные изотопы тория и урана, содержащиеся на Земле в достаточно больших количествах.

Подобная таблица приводится лишь в немногочисленных специальных монографиях. Анализом закономерностей, связанных со стабильными изотопами, занимается специальная дисциплина, которую иногда называют изотопной статистикой [7, 8].

Таблица содержит 282 стабильных изотопа, количество которых для различных элементов варьируется в широких пределах. Один-единственный вид свойственен 21 элементу с нечетным Z (исключение – бериллий с Z = 4). По два изотопа имеют 20 элементов также с нечетными Z (кроме гелия с Z = 2 и углерода с Z = 6). Шесть элементов – кислород, неон, магний, кремний, аргон и калий – представлены тремя изотопами, у всех остальных элементов с четными Z насчитывается от 4 до 10 изотопов. Своеобразными «рекордсменами» оказываются кадмий и теллур (по 8 изотопов), ксенон (9) и олово (10). В таблице отсутствуют элементы с Z = 43 (технеций) и Z = 61 (прометий). Они не имеют стабильных изотопов и получены искусственно с помощью ядерных реакций. Нет в таблице и изотопов с А, равными 5 и 8.

Большинство изотопов (173) имеют четные А, причем почти все из них содержат в ядрах атомов четные количества Z и N. Изотопов с нечетными А заметно меньше (109). У элементов с четными Z не бывает больше двух изотопов c нечетными А (исключение – Аr с Z = 18 и Се с Z = 58, все их изотопы имеют четные А).

Совокупность изотопов элемента с определенным значением Z (если их больше одного) называют «плеядой». Распространенность отдельных изотопов в «плеяде» различна. Для «легких» представителей периодической системы (Z < 32) при четных Z преобладают изотопы с меньшими значениями А. У последующих элементов, напротив, природа отдает предпочтение изотопам с большими значениями А. Из двух изотопов с нечетными Z более распространенным является тот, у которого А меньше.

В целом же картина такова. У элементов от водорода до никеля (Z = 28) наблюдается резко повышенная распространенность какого-то одного изотопа. При больших значениях Z, хотя содержание изотопов в «плеяде» различается (иногда довольно существенно), фактор абсолютного «лидерства» уже не проявляется.

Наиболее распространенными в природе элементами являются (% мас. земной коры): кислород (47), кремний (29,5), алюминий (8,05), железо (4,65), кальций (2,96), натрий (2,5), калий (2,5) и магний (1,87). Их суммарное содержание более 99%. Следовательно, на долю остальных приходится менее 1%.

Из этой «восьмерки» алюминий и натрий представлены единственным видом атомов (27А1 и 23Na); у других – один из изотопов имеет резко преобладающее содержание (16О, 28Si, 56Fe, 40Ca, 39K, 24Mg). Таким образом, перечисленные изотопы являются тем материалом, из которого фактически построена вся «земная твердь». Главные «компоненты» атмосферы – 14N и 16O. Наконец, водное пространство – сочетания того же изотопа кислорода с легким изотопом водорода (1Н). Водород, кислород вместе с углеродом и азотом входят во все растительные и животные организмы, в связи с чем их выделяют в особую группу элементов – органогенов.

Таким образом получается, что всего десять стабильных изотопов в решающей степени обусловливают бесконечное разнообразие неорганической и органической природы.

Почему почти половина элементов, существующих на Земле, представлены лишь одним или двумя видами атомов? Почему содержания отдельных изотопов в «плеядах», как правило, заметно различаются? Почему, наконец, природа отдает предпочтение разновидностям атомов с четными значениями Z? Перечень подобных вопросов легко продолжить. Ответы на них с той или иной степенью полноты дает теоретическая ядерная физика. Разумеется, в рамках данной статьи невозможно даже в общих чертах изложить их суть. В связи с этим ограничимся рассмотрением лишь одной, но весьма важной закономерности, во многом определяющей «статистику» стабильных изотопов.

В ядерной физике существует понятие «изобары» – разновидности атомов с одинаковыми А, но различными Z и N. В 1934 г. немецкий ученый Й.Маттаух сформулировал правило: если два изобара отличаются по величинам Z на 1, то один из них должен быть нестабильным. Например, в паре изобаров 40Ar–40К последний радиоактивен. Это правило дает возможность внести определенную ясность в некоторые особенности «изотопной статистики».

Почему у элементов с Z = 43 и 61 нет стабильных изотопов? В принципе они могли бы иметь один или два устойчивых вида атомов. Однако соседние с технецием и прометием элементы (молибден и рутений, неодим и самарий соответственно) представлены в природе большим числом изотопов в широком диапазоне А. Согласно правилу изобаров, вероятные значения А для Z = 43 и 61 оказываются «запрещенными». Когда изотопы технеция и прометия были синтезированы, то выяснилось, что большинство из них характеризуются невысокой продолжительностью жизни.

Те изотопы, которые в таблице помечены «звездочкой», составляют изобарные пары с изотопами соседних элементов (например, 87Pb с 87Sr, 115In c 115Sn и т. д.), но они радиоактивны в очень малой степени.

На заре эволюционного развития Земли распространенность изотопов различных элементов отличалась от современных. Еще присутствовали многие радиоактивные изотопы с относительно большими периодами полураспада. Постепенно они превращались в стабильные изотопы других элементов, благодаря чему изменялось их содержание в «плеядах». Сохранились лишь «первичные» торий-232, уран-238 и уран-235, но и их земные ресурсы за миллиарды лет уменьшились. Если бы они не были столь долгоживущими, то ныне отсутствовали бы и «вторичные» элементы, изотопы которых составляют радиоактивные «семейства». В таком случае естественной верхней границей периодической системы оказался бы висмут с Z = 83.

Таким образом, правило изобаров играло своеобразную «сортирующую» роль. Оно «отсеивало» разновидности атомов с небольшой продолжительностью жизни, изменяло первоначальный изотопный состав элементов и в конечном счете способствовало окончательному формированию той картины «мира стабильных изотопов», которая представлена в таблице.

Со времени создания Дж.Дальтоном химической атомистики атомный вес (масса) долго был единственной фундаментальной количественной характеристикой элемента. Определение его для многих элементов требовало тщательных экспериментальных исследований и зависело от выбора определенной «точки отсчета» – шкалы атомных весов (кислородной О = 16 или водородной Н = 1). В 1864 г. английский химик Дж.Ньюлендс впервые расположил известные в ту пору элементы в порядке увеличения их атомных весов. Эта естественная последовательность существенно способствовала открытию периодического закона и разработке структуры периодической системы.

Однако в трех случаях возрастание атомных весов нарушалось: кобальт был тяжелее никеля, теллур – йода, аргон – калия. Подобные «аномалии», как считали некоторые исследователи, подрывали основы периодического закона. Сам же Д.И.Менделеев не придавал серьезного значения этим «аномалиям», полагая, что рано или поздно они получат объяснение [9]. Так и случилось в действительности. Однако если «аномалий» было бы не три, а больше, то сама констатация явления периодического изменения свойств элементов оказалась бы не столь очевидной. Но дело в том, что природа ограничила их число.

Атомную массу элемента можно рассчитать по формуле:

Ar = 1/100(aA1 + bA2 + cA3...),

где а, b, с – содержания (в %) в «плеяде» изотопов с массовыми числами A1, A2, A3... соответственно. Как видно из таблицы, у аргона резко преобладает изотоп с А = 40, тогда как у калия – более легкий с А = 39. Такая же картина наблюдается и для других «аномальных пар» (А = 59 – у кобальта и А = 58 – у никеля; А = 130 – у теллура и А = 127 – у йода). По этой причине атомные массы предшествующих элементов в парах оказываются большими, чем последующих.

Таблица

Массовые числа стабильных изотопов и их относительная распространенность


Примечание. Полужирным выделены элементы, у которых отсутствуют изотопы, а также наиболее распространенный изотоп в «плеяде».

В 1911–1914 гг. была разработана ядерно-электронная модель атома Э.Резерфорда – Н.Бора и доказано А.Ван ден Бруком и Г.Мозли, что порядковый номер элемента в периодической системе численно равен заряду ядра его атома. В результате стало очевидным: ряд химических элементов, выстроенных в порядке возрастания их атомных весов, почти идеально (за исключением «аномалий») совпал с последовательностью элементов, отвечающей монотонному увеличению Z.

Причина этого удивительного совпадения заключается в «фиксированности» изотопного состава существующих на Земле элементов. Мы уже отмечали, что в начале ее эволюции этот состав был иным. Однако он не мог резко отличаться от современного. Следовательно, изначальная распространенность стабильных изотопов была результатом процессов, связанных с фундаментальными событиями, относящимися к сфере астрофизических представлений. Говоря точнее, с проблемой происхождения элементов.

Еще в 1920-х гг. высказывались идеи, что образование элементов происходит в атмосфере звезд, в условиях очень высоких температур и давлений. Позднее стали разрабатываться общие теории происхождения элементов. Одна из них, предложенная в 1948 г. Р.Альфером, Г.Бёте и Г.Гамовым, предполагала, что синтез элементов произошел в результате «взрыва» нейтронной звезды. Освободившиеся нейтроны распадались на протоны и электроны. Протоны и электроны группировались в более сложные системы – атомы различных элементов. Согласно авторам теории, путем последовательного захвата нейтронов и b-распадов образующихся атомов возникало огромное количество радиоактивных и стабильных изотопов, в том числе и тех, которые ныне существуют на Земле. Причем весь процесс синтеза осуществился за 15 мин (!). Однако эта изящная теория оказалась несостоятельной. Так, изотопы с А = 5 и 8 (они, кстати, отсутствуют в таблице) настолько нестабильны, что распадаются раньше, чем их ядра успевают захватить очередной нейтрон.

В настоящее время доказано, что синтез элементов постоянно происходит в звездах, причем на разных стадиях их эволюции. Те или иные совокупности изотопов образуются благодаря различным ядерным реакциям. Получила достаточно удовлетворительное объяснение космическая распространенность элементов, которая заметно отличается от земной. Так, господствующими в космосе оказываются водород и гелий. Однако по мере увеличения Z это различие становится менее выраженным.

«Каркас» современного изотопного состава элементов на Земле был построен многие миллиарды лет назад, а его «доводка» связана уже с процессами, происходившими на протяжении истории нашей планеты.

В заключение обратим внимание на один важный терминологический «нюанс». Само понятие «изотоп» правомерно, когда речь идет об атомных видах с определенными значениями Z. Если же сопоставляются виды с неодинаковыми Z, то в данном случае использование названия «изотоп» недостаточно оправданно (ведь сравниваются разновидности атомов, располагающихся в различных клетках периодической системы).

Ныне получил широкое распространение термин «нуклид», введенный американским физиком Т.Команом в 1947 г.: «Вид атомов, характеризующийся составом своего ядра, в частности, числом содержащихся в нем протонов и нейтронов». В приведенной таблице поэтому слово «изотопы» можно было бы заменить на «нуклиды». Однако эта замена никоим образом не повлияла бы на все последующие рассуждения.

И с п о л ь з о в а н н а я   л и т е р а т у р а

1. Астон Ф. Масс-спектры и изотопы. М.: Изд-во иностр. лит-ры, 1948.
2. Вяльцев А.Н., Кривомазов А.Н., Трифонов Д.Н. Правило сдвига и явление изотопии. М.: Атомиздат, 1976.
3. Трифонов Д.Н., Кривомазов А.Н., Лисневский Ю.И. Химические элементы и нуклиды. Специфика открытий. М.: Атомиздат, 1980.
4. Трифонов Д.Н. Периодическая система элементов. История в таблицах. М.: МП ВХО им. Д.И.Менделеева, 1992, с. 46.
5. Воронцова Е.Р. Атомный вес. История разработки экспериментальных методов. М.: Наука, 1984.
6. Лисневский Ю.И. Атомные веса и возникновение ядерной физики. М.: Наука, 1984.
7. Ранкама К. Изотопы в геологии. М.: Изд-во иностр. лит-ры, 1956.
8. Гайсинский М.Н. Ядерная химия и ее приложения. М.: Изд-во иностр. лит-ры, 1962.
9. Трифонов Д.Н. «Аномальная» история. Химия, 1996, № 26, 28.

Д.Н. ТРИФОНОВ